更多>>精华博文推荐
更多>>人气最旺专家

艾青

领域:宜宾新闻网

介绍:自读要求:1、读一读:读准字音,把诗句读通顺。...

王力

领域:硅谷网

介绍:人口老龄化、年轻化带来的问题及解决措施?问题:A、劳动力缺乏,国防兵力不足B、加重社会福利开支C、老年人生活困难和精神孤独等社会问题措施:鼓励生育(长期)接纳外来移民(短期)问题:人口增长过快,数量过多,环境、资源压力大,如就业压力大,生活水平低(影响经济增长)等。w66com,w66com,w66com,w66com,w66com,w66com

利来国际AG旗舰厅
本站新公告w66com,w66com,w66com,w66com,w66com,w66com
vri | 2019-01-19 | 阅读(720) | 评论(255)
“对低年龄段的孩子,有很多其他途径。【阅读全文】
w66com,w66com,w66com,w66com,w66com,w66com
pv7 | 2019-01-19 | 阅读(687) | 评论(749)
加载中...价格说明一般情况下:划线价格:划线的价格可能是商品的销售指导价或该商品的曾经展示过的销售价等,并非原价,仅供参考。【阅读全文】
ugx | 2019-01-19 | 阅读(933) | 评论(16)
PAGE考点42恒过定点的直线要点阐述要点阐述含参的直线方程,大都可以改写成的形式,由直线的点斜式方程可知,直线必定过点,利用直线恒过定点可以妙解数学问题.典型例题典型例题【例】若直线l∶y=kx-eq\r(3)与直线2x+3y-6=0的交点位于第一象限,则直线l的倾斜角α的取值范围是________.【答案】30°<α<90°【易错易混】直线从CA运动到CB,是直线的斜率k>eq\f(\r(3),3),对应的倾斜角为(30°,90°),不包括90°.小试牛刀小试牛刀1.若,直线y+2=k(x–1)恒过一个定点,则这个定点的坐标为()A.(1,–2)B.(–1,2)C.(–2,1)D.(2,1)【答案】A【解析】y+2=k(x–1)是直线的点斜式方程,它经过定点为(1,–2).故选A.【规律方法】解含有参数的直线恒过定点的问题.方法1:任给直线中的参数赋两个不同的值,得到两条不同的直线,然后验证这两条直线的交点就是题目中含参数直线所过的定点,从而问题得解.方法2:分项整理,含参数的并为一项,不含参数的并为一项,整理成等号右边为0的形式,然后含参数的项和不含参数的项分别为零,解此方程组得到的解即为已知直线恒过的定点.2.若,则直线必经过的一个定点是(  )A.(1,1)B.(–1,1)C.(1,–1)D.(–1,–1)【答案】C【解析】由,得,故可化为,所以必经过的一个定点是(1,–1).3.三条直线:,,构成三角形,则的取值范围是(  )A.B.C.D.,【答案】A【秒杀技】若a=1,或a=–1则有两条直线平行,构不成三角形,选出答案A.4.直线y=mx+2m【答案】(-2,1)【解析】把直线方程化为点斜式y-1=m(x+2).显然当x=-2时y=1,即直线恒过定点(-2,1).5.直线的系数,满足,则直线必过定点________.【答案】(6,–8)【解析】∵,∴,∴.∴,∴,解方程组得∴定点为(6,–8).考题速递考题速递1.直线,当变化时,所有直线都通过定点(  )A.(0,0)B.(0,1)C.(3,1)D.(2,1)【答案】C【解析】直线方程整理为k(x–3)–(y–1)=0,过定点(3,1).2.不论怎么变化,直线恒过定点(  )A.(1,2)B.(–1,–2)C.(2,1)D.(–2,–1)【答案】B3.两直线3ax-y-2=0和(2a-1)x+5ay-1=0分别过定点A,B,则|ABA.eq\f(\r(89),5)B.eq\f(17,5)C.eq\f(13,5)D.eq\f(11,5)【答案】C【解析】直线3ax-y-2=0过定点A(0,-2),直线(2a-1)x+5ay-1=0,过定点Beq\b\lc\(\rc\)(\a\vs4\al\co1(-1,\f(2,5))),由两点间的距离公式,得|AB|=eq\f(13,5).4.已知直线l:5ax-5y-a+3=0.(1)求证:不论a为何值,直线l总经过第一象限;(2)为使直线不经过第二象限,求a的取值范围.【解析】(1)将直线l的方程整理为y-eq\f(3,5)=a(x-eq\f(1,5)),∴l的斜率为a,且过定点A(eq\f(1,5),eq\f(3,5)).而点A(eq\f(1,5),eq\f(3,5))在第一象限,故l过第一象限.∴不论a为何值,直线l总经过第一象限.(2)直线OA的斜率为k=eq\f(\f(3,5)-0,\f(1,5)-0)=3.∵l不经过第二象限,∴a≥3.数学文化数学文化蒲丰试验一天,法国数学家蒲丰请许多朋友到家里,做了一次试验.蒲丰在桌子上铺好一张大白纸,白纸上画满了等距离的平行线,他又拿出很多等长的小针,小针的长度都是平行线的一半.蒲丰说:“请大家把这些小针往这张白纸上随便仍吧!”客人们按他说的做了.蒲丰的统计结果是:大家共掷2212次,其中小针与纸上平行线相交704次,2210÷704≈3.142.蒲丰说:“这个数是π的近似值.每次都会得到圆周率的近似值,而且投掷的次数越多,求出的圆周率近似值越精确.”这就是著名的“蒲丰试验”.【阅读全文】
pl7 | 2019-01-19 | 阅读(159) | 评论(982)
全名粤语近音“圈凭踏”,有着飞黄腾达的寓意。【阅读全文】
gsd | 2019-01-19 | 阅读(792) | 评论(669)
”王菲整个夏天都在无锡录制,赵薇表示要“接王菲回家”。【阅读全文】
if6 | 2019-01-18 | 阅读(798) | 评论(199)
据统计,%的文档作者睁一只眼闭一只眼,只有极少部分作者原意删除文档。【阅读全文】
6ug | 2019-01-18 | 阅读(509) | 评论(129)
……………………………………………………283.3.3学校公共浴室节水、节能研究……………………………………313.4游泳馆用水……………………………………………………………….323.4.1分析实验数据……………………………………………………….323.4.2游泳馆节水…………………………….:………………………….343.5教学楼用水…………………………….:…………………………………353.5.1教学楼调研方法……………………………………………………353.5.2教学楼人均用水定额、单位面积用水量…………………………35目录3.5.2教学楼节水措施……………………………………………………383.6校医院用水量调查分析………………………………………………….393.6.1校医院用水量监测结果……………………………………_……393.6.2校医院用水量情况小结……………………………………………4l3.7图书馆用水量调查分析…………………………………………………423.7.1图书馆用水人数统计………………………………………………423.7.2图书馆用水规律分析………………………………………………433.7.3【阅读全文】
v5e | 2019-01-18 | 阅读(888) | 评论(653)
(三)积极上进,继续学习深造。【阅读全文】
w66com,w66com,w66com,w66com,w66com,w66com
gxt | 2019-01-18 | 阅读(880) | 评论(15)
 导数在实际生活中的应用学习目标重点难点1.学会解决利润最大,用料最省,效率最高等优化问题.2.学会利用导数解决生活中简单实际问题,并体会导数在解决实际问题中的作用.3.提高将实际问题转化为数学问题的能力.重点:用导数解决实际生活中的最优化问题.难点:将实际问题转化为数学问题.导数在实际生活中的应用导数在实际生活中有着广泛的应用.例如,用料最省、利润最大、效率最高等问题,常常可以归结为函数的______问题,从而可用________来解决.预习交流1做一做:有一长为16m的篱笆,要围成一个矩形场地,则此矩形场地的最大面积为______m2.预习交流2做一做:做一个无盖的圆柱形水桶,若需使其体积是27π,且用料最省,则圆柱的底面半径为______.预习交流3用导数求解生活中的优化问题时应注意哪些问题?在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引最值 导数预习交流1:提示:设矩形长为xm,则宽为(8-x)m,矩形面积S=x(8-x)(8>x>0),令S′=8-2x=0,得x=4.此时S最大=42=16(m2).预习交流2:提示:设半径为r,则高h=eq\f(27,r2),∴S=2πr·h+πr2=2πr·eq\f(27,r2)+πr2=eq\f(54π,r)+πr2,令S′=2πr-eq\f(54π,r2)=0,得r=3,∴当r=3时,用料最省.预习交流3:提示:(1)在求实际问题的最大(小)值时,一定要考虑实际问题的意义,不符合实际意义的值应舍去.(2)在解决实际优化问题时,不仅要注意将问题中涉及的变量关系用函数关系表示,还应确定出函数关系式中自变量的定义区间.(3)在实际问题中,有时会遇到函数在区间内只有一个点使f′(x)=0的情形,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道这就是最大(小)值.一、面积、体积最大问题如图所示,有一块半椭圆形钢板,其长半轴长为2r,短半轴长为r.计划将此钢板切割成等腰梯形的形状,下底AB是半椭圆的短轴,上底CD的端点在椭圆上,记CD=2x,梯形面积为S.(1)求面积S以x为自变量的函数式,并写出其定义域;(2)求面积S的最大值.思路分析:表示面积时,首先要建立适当的平面直角坐标系,借助椭圆的方程,可表示出等腰梯形的高.用总长为的钢条制作一个长方体容器的框架,如果所制作容器的底面的一边比另一边长,那么高为多少时容器的容积最大?并求出它的最大容积.1.求面积、体积的最大值问题是生活、生产中的常见问题,解决这类问题的关键是根据题设确定出自变量及其取值范围,利用几何性质写出面积或体积关于自变量的函数,然后利用导数的方法来解.2.必要时,可选择建立适当的坐标系,利用点的坐标建立函数关系或曲线方程,有利于解决问题.二、费用最省问题如图所示,设铁路AB=50,B,C之间距离为10,现将货物从A运往C,已知单位距离铁路费用为2,公路费用为4,问在AB上何处修筑公路至C,可使运费由A至C最省?思路分析:可从AB上任取一点M,设MB=x,将总费用表示为变量x的函数,转化为函数的最值求解.某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?eq\b\lc\(\rc\(\a\vs4\al\co1(注:平均综合费用=平均建筑费用+平均购地费用,平\b\lc\\rc\(\a\vs4\al\co1(,,,,,))))eq\b\lc\\rc\)(\a\vs4\al\co1(均购地费用=\f(购地总费用,建筑总面积)))1.求实际问题的最大(小)值时,一定要从问题的实际意义去考虑,不符合实际意义的理论值应舍去;2.在实际问题中,有时会遇到函数在区间内只有一个点使f′(x)=0的情形,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道这就是最大(小)值;3.在解决实际优化问题中,不仅要注意将问题中涉及的变量关系用函数关系式给予表示,还应确定函数关系式中自变量的取值范围,即函数的定义域.三、利润最大问题某汽车生产企业上年度生产一品牌汽车的投入成本为10万元/辆,出厂价为13万元/辆,年销售量为5000辆.本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车投入成本增加的比例为x(0<x<1),则出厂价相应提高的比例为,年销售量也相应增加.已知年利润=(每辆车的出厂【阅读全文】
4mx | 2019-01-17 | 阅读(668) | 评论(816)
得出一次轧制后处理最大剪切强度的轧制压下率。【阅读全文】
bh5 | 2019-01-17 | 阅读(228) | 评论(513)
PAGE考点42恒过定点的直线要点阐述要点阐述含参的直线方程,大都可以改写成的形式,由直线的点斜式方程可知,直线必定过点,利用直线恒过定点可以妙解数学问题.典型例题典型例题【例】若直线l∶y=kx-eq\r(3)与直线2x+3y-6=0的交点位于第一象限,则直线l的倾斜角α的取值范围是________.【答案】30°<α<90°【易错易混】直线从CA运动到CB,是直线的斜率k>eq\f(\r(3),3),对应的倾斜角为(30°,90°),不包括90°.小试牛刀小试牛刀1.若,直线y+2=k(x–1)恒过一个定点,则这个定点的坐标为()A.(1,–2)B.(–1,2)C.(–2,1)D.(2,1)【答案】A【解析】y+2=k(x–1)是直线的点斜式方程,它经过定点为(1,–2).故选A.【规律方法】解含有参数的直线恒过定点的问题.方法1:任给直线中的参数赋两个不同的值,得到两条不同的直线,然后验证这两条直线的交点就是题目中含参数直线所过的定点,从而问题得解.方法2:分项整理,含参数的并为一项,不含参数的并为一项,整理成等号右边为0的形式,然后含参数的项和不含参数的项分别为零,解此方程组得到的解即为已知直线恒过的定点.2.若,则直线必经过的一个定点是(  )A.(1,1)B.(–1,1)C.(1,–1)D.(–1,–1)【答案】C【解析】由,得,故可化为,所以必经过的一个定点是(1,–1).3.三条直线:,,构成三角形,则的取值范围是(  )A.B.C.D.,【答案】A【秒杀技】若a=1,或a=–1则有两条直线平行,构不成三角形,选出答案A.4.直线y=mx+2m【答案】(-2,1)【解析】把直线方程化为点斜式y-1=m(x+2).显然当x=-2时y=1,即直线恒过定点(-2,1).5.直线的系数,满足,则直线必过定点________.【答案】(6,–8)【解析】∵,∴,∴.∴,∴,解方程组得∴定点为(6,–8).考题速递考题速递1.直线,当变化时,所有直线都通过定点(  )A.(0,0)B.(0,1)C.(3,1)D.(2,1)【答案】C【解析】直线方程整理为k(x–3)–(y–1)=0,过定点(3,1).2.不论怎么变化,直线恒过定点(  )A.(1,2)B.(–1,–2)C.(2,1)D.(–2,–1)【答案】B3.两直线3ax-y-2=0和(2a-1)x+5ay-1=0分别过定点A,B,则|ABA.eq\f(\r(89),5)B.eq\f(17,5)C.eq\f(13,5)D.eq\f(11,5)【答案】C【解析】直线3ax-y-2=0过定点A(0,-2),直线(2a-1)x+5ay-1=0,过定点Beq\b\lc\(\rc\)(\a\vs4\al\co1(-1,\f(2,5))),由两点间的距离公式,得|AB|=eq\f(13,5).4.已知直线l:5ax-5y-a+3=0.(1)求证:不论a为何值,直线l总经过第一象限;(2)为使直线不经过第二象限,求a的取值范围.【解析】(1)将直线l的方程整理为y-eq\f(3,5)=a(x-eq\f(1,5)),∴l的斜率为a,且过定点A(eq\f(1,5),eq\f(3,5)).而点A(eq\f(1,5),eq\f(3,5))在第一象限,故l过第一象限.∴不论a为何值,直线l总经过第一象限.(2)直线OA的斜率为k=eq\f(\f(3,5)-0,\f(1,5)-0)=3.∵l不经过第二象限,∴a≥3.数学文化数学文化蒲丰试验一天,法国数学家蒲丰请许多朋友到家里,做了一次试验.蒲丰在桌子上铺好一张大白纸,白纸上画满了等距离的平行线,他又拿出很多等长的小针,小针的长度都是平行线的一半.蒲丰说:“请大家把这些小针往这张白纸上随便仍吧!”客人们按他说的做了.蒲丰的统计结果是:大家共掷2212次,其中小针与纸上平行线相交704次,2210÷704≈3.142.蒲丰说:“这个数是π的近似值.每次都会得到圆周率的近似值,而且投掷的次数越多,求出的圆周率近似值越精确.”这就是著名的“蒲丰试验”.【阅读全文】
zbm | 2019-01-17 | 阅读(558) | 评论(427)
陕甘宁边区首府、中共中央所在地延安成为敌后战场的战略总后方和指挥中枢。【阅读全文】
ahn | 2019-01-17 | 阅读(868) | 评论(30)
浙江大学硕士学位论文目录3.2.2.1菌种的富集筛选与鉴定…………………………………………253.2.2.2挑选的菌株对PCB61的降解能力研究…………………………253.3结果与讨论……………………………………………………………………263.3.1分离茵的鉴定结果………………………………………………………..263.3.2高效降解菌的挑选………………………………………………………..283.3.3T29和W5的分类鉴定…………………………………………………..283.3.4生长曲线…………………………………………………………………..293.3.5两种菌对不同的碳源的利用情况……………………………………….303.4本章小结………………………………………………………………………314微生物降解PCBS性能研究………………………………………………………………..324.1引言…………………………………………………………………………….324.2材料与方法……………………………………………………………………324.2.1实验材料………………………………………………………………….324.2.2实验方法…………………………………………………………………..334.2.2.1添加不同碳源对微生物群落降解PCBl242的影响……………334.2.2.2添加不同碳源对Bacillussp.T29和Corynebacteriumsp.W5降解PCBl242的影响…………………………………………………………………….334.2.2.31PCB242对Bacillussp.W5的联苯和sp.T29和Corynebacterium苯甲酸趋药性的影响研究…………………………………………………………一334.2.2.4不同重金属对Bacillussp.T29的苯甲酸趋药性的影响研究….344.3结果与讨论……………………………………………………………………344.3.1添加不同碳源对微生物群落降解PCBl242的影响……………………344.3.2添加不同碳源对Bacillussp.T29和Corynebacteriumsp.W5降解PCBl242的影响………………………………………………………………..354.3.3PCBl242对Bacillussp.T29和Corynebacteriumsp.W5的联苯和苯甲酸趋药性的影响研究………………………………………………………………364.3.4不同重金属对Bacillussp.T29的苯甲酸趋药性的影响研究………….374.4本章小结………………………………………………………………………385全文研究结论与展望……………………………………………………………………39III浙江大学硕士学位论文目录5.1研究结论………………………………………………………………………395.2研究展望………………………………………………………………………395.3创新点…………………………………………………………………………………………………40参考文献………………………………………………………………………………………………….4l攻读硕士期间获得成果…………………………………………………………………….48【阅读全文】
khy | 2019-01-16 | 阅读(263) | 评论(363)
“也许在下一季可能会有一些调整。【阅读全文】
2sd | 2019-01-16 | 阅读(806) | 评论(229)
”之后,鹏鹏试听了一个小时的课程,在老师的指导下,在一款名叫scratch的软件界面中制作完成了一款小游戏。【阅读全文】
共5页

友情链接,当前时间:2019-01-19

利来娱乐w66 利来国际娱乐 利来国际旗舰版 利来娱乐城 利来国际娱乐w66
利来娱乐帐户 利来国际旗舰厅怎么 利来w66 利来国际旗舰厅怎么 利来国际w66利来国际w66
w66.cum w66.C0m 利来国际旗舰厅怎么 利来国际老牌w66 利来国际最给利的老牌
利来娱乐网 利来娱乐网 w66.com利来国际 利来国际最给利的老牌 利来国际最老牌
汉阴县| 延寿县| 崇仁县| 磴口县| 新密市| 仲巴县| 安泽县| 新昌县| 阳信县| 青海省| 容城县| 棋牌| 武城县| 江西省| 新宾| 郎溪县| 丹凤县| 甘泉县| 天祝| 东丽区| 高邑县| 青川县| 榕江县| 太保市| 名山县| 若尔盖县| 乌兰县| 竹溪县| 鸡西市| 章丘市| 泗水县| 子洲县| 公主岭市| 中山市| 五家渠市| 磐石市| 安远县| 莎车县| 南乐县| 庆元县| 沿河| http://m.90077877.cn http://m.20163881.cn http://m.52717658.cn http://m.19841838.cn http://m.99525927.cn http://m.06868705.cn